Friday, September 17, 2010

Sustainable Hydrocarbon Fuels By Recycling Co2 And H2O With Renewable Or Nuclear Energy

Sustainable Hydrocarbon Fuels By Recycling Co2 And H2O With Renewable Or Nuclear Energy
"Renewable and Sustainable Energy Reviews (14 August 2010), doi:10.1016/j.rser.2010.07.014"

To improve the sustainability of transportation, a major goal is the replacement of conventional petroleum-based fuels with more sustainable fuels that can be used in the existing infrastructure (fuel distribution and vehicles). While fossil-derived synthetic fuels (e.g. coal derived liquid fuels) and biofuels have received the most attention, similar hydrocarbons can be produced without using fossil fuels or biomass. Using renewable and/or nuclear energy, carbon dioxide and water can be recycled into liquid hydrocarbon fuels in non-biological processes which remove oxygen from CO 2 and H 2 O (the reverse of fuel combustion). Capture of CO 2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. This article critically reviews the many possible technological pathways for recycling CO 2 into fuels using renewable or nuclear energy, considering three stages-CO 2 capture, H 2 O and CO 2 dissociation, and fuel synthesis. Dissociation methods include thermolysis, thermochemical cycles, electrolysis, and photoelectrolysis of CO 2 and/or H 2 O. High temperature co-electrolysis of H 2 O and CO 2 makes very efficient use of electricity and heat (near-100% electricity-to-syngas efficiency), provides high reaction rates, and directly produces syngas (CO/H 2 mixture) for use in conventional catalytic fuel synthesis reactors. Capturing CO 2 from the atmosphere using a solid sorbent, electrolyzing H 2 O and CO 2 in solid oxide electrolysis cells to yield syngas, and converting the syngas to gasoline or diesel by Fischer-Tropsch synthesis (FTS) is identified as one of the most promising, feasible routes. An analysis of the energy balance and economics of this CO 2 recycling process is presented. We estimate that the full system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis) and the price of electricity needed to produce synthetic gasoline at U.S.D 2/gal ( 0.53/L) is 2-3 U.S. cents/kWh. For 3/gal ( 0.78/L) gasoline, electricity at 4-5 cents/kWh is needed. In some regions that have inexpensive renewable electricity, such as Iceland, fuel production may already be economical. The dominant costs of the process are the electricity cost and the capital cost of the electrolyzer, and this capital cost is significantly increased when operating intermittently (on renewable power sources such as solar and wind). The potential of this CO 2 recycling process is assessed, in terms of what technological progress is needed to achieve large-scale, economically competitive production of sustainable fuels by this method.

"Christopher Graves, Sune Ebbesen, Mogens Mogensen, Klaus Lackner"

0 comments:

Post a Comment